Non-Parametric Spherical Jeans Mass Estimation with B-Splines

Nabeel Rehemtulla¹, Monica Valluri¹, Eugene Vasiliev^{2, 3}

¹ Department of Astronomy, University of Michigan, Ann Arbor, MI, USA ² Institute of Astronomy, University of Cambridge, Cambridge, UK ³ Lebedev Physical Institute, Moscow, Russia

MIDAS annual symposium 2020

Overview

- Background
 - Dark matter
 - Spherical Jeans equation and modeling
- Our novel routine
- Results of testing our routine
- Application to the Milky Way

Background: Dark matter

What exactly is dark matter?

How is it distributed in a galaxy?

Background: Spherical Jeans Equation and Modeling

$$M(< r) = \frac{v_c^2 r}{G} \qquad M(< r) = \frac{\overline{v_r^2} r}{G} \left(-\frac{d \ln \rho}{d \ln r} - \frac{d \ln \overline{v_r^2}}{d \ln r} - 2\beta \right) \qquad \beta = 1 - \frac{v_\theta^2 + v_\phi^2}{2v_r^2}$$

• Apply to halo stars (tracers)

• Kinematics to get mass profile, M(< r)

- Not a new method (Jeans 1915)
- Assumptions
 - Spherical symmetry
 - Dynamical equilibrium

Description of terms

M(<r) : Mass enclosed

r: spherical radius from galactic center

G: Gravitational constant

 $v_r, v_{\phi}, v_{\theta}$: spherical velocity components

 ϱ : number density of tracers

 β : velocity anisotropy

Our Novel Routine

$$M(< r) = \frac{\overline{v_r^2}r}{G} \left(-\frac{\mathrm{d}\ln\rho}{\mathrm{d}\ln r} - \frac{\mathrm{d}\ln\overline{v_r^2}}{\mathrm{d}\ln r} - 2\beta \right) \qquad \beta = 1 - \frac{v_\theta^2 + v_\phi^2}{2v_r^2}$$

- Uses **B-Splines**
 - Unbinned, Non-parametric
 - Accurate, convenient derivatives
- Calculation of velocity terms
 - Fit B-Splines to spherical velocity components, v_r^2 , v_{ϕ}^2 , v_{θ}^2

- Calculation of density ρ term
 - Fit B-Spline to tracer count, $C(\ln r)$
 - Numerical derivative
 - Richardson's method

$$\rho(\mathbf{r}) = \mathcal{C}(\ln \mathbf{r}) / 4\pi r^3$$

Testing with mock datasets

- Why use mock data (simulations)?
 - True cumulative profile
 - Control how assumptions are broken
- Quantify errors introduced when breaking assumptions
- AGAMA (Vasiliev 2019)

Progression of datasets

- 1. Spherical halo
- 2. Flattened halo (6 variants)
- 3. Spherical halo with disk and bulge

Results from testing a spherical halo

Flattened halo (axis ratio=0.80) -and-Halo, Disk & Bulge Both break assumption of

Results from testing non-spherical datasets

Application to the Milky Way

- Current work is preparation for real data
 Test assumption of dynamical equilibrium
- Milky Way data from
 - Gaia
 - Dark Energy Spectroscopic Instrument (DESI)

• Implications for "Jeans-users"

Overview

- Background
 - Dark matter
 - Spherical Jeans modeling
- Our novel routine
- Results of testing our routine
- Application to the Milky Way

Questions and comments

Contact us:

nabeelr@umich.edu mvalluri@umich.edu

This work is funded by NASA grants NNX15AK79G and 80NSSC20K0509 and a Catalyst Grant from MICDE.

Thank you!

References:

Jeans, J. H., 1915, MNRAS, 76, 70

Vasiliev, E., 2019, MNRAS, 482, 1525

Image Sources:

http://mosdef.astro.berkeley.edu/wp-content/uploads/2015/12/rot_curve.png https://www.esa.int/ESA_Multimedia/Images/2018/05/Anatomy_of_the_Milky_Way https://solarsystem.nasa.gov/system/content_pages/main_images/1698_Gaia_mappin g_the_stars_of_the_Milky_Way-900x597.jpg https://news.fnal.gov/wp-content/uploads/2020/05/mayall-telescope-interior-berkeley.j pg